Microbial contributions to subterranean methane sinks.

نویسندگان

  • J T Lennon
  • D Nguyễn-Thùy
  • T M Phạm
  • A Drobniak
  • P H Tạ
  • N Ð Phạm
  • T Streil
  • K D Webster
  • A Schimmelmann
چکیده

Sources and sinks of methane (CH4 ) are critical for understanding global biogeochemical cycles and their role in climate change. A growing number of studies have reported that CH4 concentrations in cave ecosystems are depleted, leading to the notion that these subterranean environments may act as sinks for atmospheric CH4 . Recently, it was hypothesized that this CH4 depletion may be caused by radiolysis, an abiotic process whereby CH4 is oxidized via interactions with ionizing radiation derived from radioactive decay. An alternate explanation is that the depletion of CH4 concentrations in caves could be due to biological processes, specifically oxidation by methanotrophic bacteria. We theoretically explored the radiolysis hypothesis and conclude that it is a kinetically constrained process that is unlikely to lead to the rapid loss of CH4 in subterranean environments. We present results from a controlled laboratory experiment to support this claim. We then tested the microbial oxidation hypothesis with a set of mesocosm experiments that were conducted in two Vietnamese caves. Our results reveal that methanotrophic bacteria associated with cave rocks consume CH4 at a rate of 1.3-2.7 mg CH4  · m-2  · d-1 . These CH4 oxidation rates equal or exceed what has been reported in other habitats, including agricultural systems, grasslands, deciduous forests, and Arctic tundra. Together, our results suggest that depleted concentrations of CH4 in caves are most likely due to microbial activity, not radiolysis as has been recently claimed. Microbial methanotrophy has the potential to oxidize CH4 not only in caves, but also in smaller-size open subterranean spaces, such as cracks, fissures, and other pores that are connected to and rapidly exchange with the atmosphere. Future studies are needed to understand how subterranean CH4 oxidation scales up to affect local, regional, and global CH4 cycling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial contributions to subterranean methane sinks

Sources and sinks of methane (CH4) are critical for understanding global biogeochemical cycles and their role in climate change. A growing number of studies have reported that CH4 concentrations in cave ecosystems are depleted, leading to the notion that these subterranean environments may act as sinks for atmospheric CH4. Recently, it was hypothesized that this CH4 depletion may be caused by r...

متن کامل

Subterranean atmospheres may act as daily methane sinks.

In recent years, methane (CH4) has received increasing scientific attention because it is the most abundant non-CO2 atmospheric greenhouse gas (GHG) and controls numerous chemical reactions in the troposphere and stratosphere. However, there is much that is unknown about CH4 sources and sinks and their evolution over time. Here we show that near-surface cavities in the uppermost vadose zone are...

متن کامل

Microbial production and oxidation of methane in deep subsurface

The goal of this review is to summarize present studies on microbial production and oxidation of methane in the deep subterranean environments. Methane is a long-living gas causing the ‘‘greenhouse’’ effect in the planet’s atmosphere. Earlier, the deep ‘‘organic carbon poor’’ subsurface was not considered as a source of ‘‘biogenic’’ methane. Evidence of active methanogenesis and presence of via...

متن کامل

Biogas production using anaerobic groundwater containing a subterranean microbial community associated with the accretionary prism

In a deep aquifer associated with an accretionary prism, significant methane (CH₄) is produced by a subterranean microbial community. Here, we developed bioreactors for producing CH₄ and hydrogen (H₂) using anaerobic groundwater collected from the deep aquifer. To generate CH₄, the anaerobic groundwater amended with organic substrates was incubated in the bioreactor. At first, H₂ was detected a...

متن کامل

Sensitivity of soil methane ̄uxes to reduced precipitation in boreal forest soils

In order to better predict soil sinks of methane, we need to examine soil methane ̄ux patterns and responses to altered soil moisture regimes. Estimates of the global atmospheric CH4 budget must also account for ̄uxes in the vast boreal region. We measured methane ̄uxes into the soil surface, methane concentrations, water content, and temperature in the soil pro®le in two interior Alaskan fores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Geobiology

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2017